FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Colombani, J., Polesello, C., Josue, F., Tapon, N. (2006). Dmp53 activates the hippo pathway to promote cell death in response to DNA damage.  Curr. Biol. 16(14): 1453--1458.
FlyBase ID
FBrf0192785
Publication Type
Research paper
Abstract
Developmental and environmental signals control a precise program of growth, proliferation, and cell death. This program ensures that animals reach, but do not exceed, their typical size . Understanding how cells sense the limits of tissue size and respond accordingly by exiting the cell cycle or undergoing apoptosis has important implications for both developmental and cancer biology. The Hippo (Hpo) pathway comprises the kinases Hpo and Warts/Lats (Wts), the adaptors Salvador (Sav) and Mob1 as a tumor suppressor (Mats), the cytoskeletal proteins Expanded and Merlin, and the transcriptional cofactor Yorkie (Yki) . This pathway has been shown to restrict cell division and promote apoptosis. The caspase repressor DIAP1 appears to be a primary target of the Hpo pathway in cell-death control. Firstly, Hpo promotes DIAP1 phosphorylation, likely decreasing its stability. Secondly, Wts phosphorylates and inactivates Yki, decreasing DIAP1 transcription. Although we understand some of the events downstream of the Hpo kinase, its mode of activation remains mysterious. Here, we show that Hpo can be activated by Ionizing Radiations (IR) in a Dmp53 (Drosophila melanogaster p53)-dependent manner and that Hpo is required (though not absolutely) for the cell death response elicited by IR or Dmp53 ectopic expression.
PubMed ID
PubMed Central ID
Related Publication(s)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Curr. Biol.
    Title
    Current Biology
    Publication Year
    1991-
    ISBN/ISSN
    0960-9822
    Data From Reference
    Alleles (4)
    Genes (8)
    Physical Interactions (1)
    Transgenic Constructs (1)