FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Kimura, K.I., Ote, M., Tazawa, T., Yamamoto, D. (2005). Fruitless specifies sexually dimorphic neural circuitry in the Drosophila brain.  Nature 438(7065): 229--233.
FlyBase ID
FBrf0191243
Publication Type
Research paper
Abstract
The Drosophila fruitless (fru) gene product Fru has been postulated to be a neural sex determination factor that directs development of the central nervous system (CNS), thereby producing male-typical courtship behaviour and inducing male-specific muscle. Male-specific Fru protein is expressed in small groups of neurons scattered throughout the CNS of male, but not female, Drosophila. Collectively, these observations suggest that Fru 'masculinizes' certain neurons, thereby establishing neural substrates for male-typical behaviour. However, specific differences between neurons resulting from the presence or absence of Fru are unknown. Previous studies have suggested that Fru might result in sexual differences in the CNS at the functional level, as no overt sexual dimorphism in CNS structure was discernible. Here we identify a subset of fru-expressing interneurons in the brain that show marked sexual dimorphism in their number and projection pattern. We also demonstrate that Fru supports the development of neurons with male-specific dendritic fields, which are programmed to die during female development as a result of the absence of Fru. Thus, Fru expression can produce a male-specific neural circuit, probably used during heterosexual courtship, by preventing cell death in identifiable neurons.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Nature
    Title
    Nature
    Publication Year
    1869-
    ISBN/ISSN
    0028-0836
    Data From Reference
    Aberrations (3)
    Alleles (8)
    Genes (6)
    Insertions (1)
    Transgenic Constructs (2)