FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Pick, S., Strauss, R. (2005). Goal-driven behavioral adaptations in gap-climbing Drosophila.  Curr. Biol. 15(16): 1473--1478.
FlyBase ID
FBrf0187324
Publication Type
Research paper
Abstract
Tasks such as reaching out toward a distant target require adaptive and goal-oriented muscle-activity patterns. The CNS likely composes such patterns from behavioral subunits. How this coordination is done is a central issue in neural motor control. Here, we present a novel paradigm, which allows us to address this question in Drosophila with neurogenetic tools. Freely walking flies are faced with a chasm in their way. Whether they initiate gap-crossing behavior at all and how vigorously they try to reach the other side of the gap depend on a visual estimate of the gap width. By interfering with various putative distance-measuring mechanisms, we found that flies chiefly use the vertical edges on the targeted side to distill the gap width from the parallax motion generated during the approach. At gaps of surmountable width, flies combine and successively improve three behavioral adaptations to maximize the front-leg reach. Each leg pair contributes in a different manner. A screen for climbing mutants yielded lines with defects in the control of climbing initiation and others with specific impairments of particular behavioral adaptations while climbing. The fact that the adaptations can be impaired separately unveils them as distinct subunits.
PubMed ID
PubMed Central ID
Related Publication(s)
Personal communication to FlyBase

[title not yet available]
Strauss, 2006.2.22, [title not yet available] [FBrf0191751]

Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Curr. Biol.
    Title
    Current Biology
    Publication Year
    1991-
    ISBN/ISSN
    0960-9822
    Data From Reference
    Alleles (6)
    Genes (6)