FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Cliffe, A., Hamada, F., Bienz, M. (2003). A role of Dishevelled in relocating Axin to the plasma membrane during Wingless signaling.  Curr. Biol. 13(11): 960--966.
FlyBase ID
FBrf0159716
Publication Type
Research paper
Abstract
Wnt signaling causes changes in gene transcription that are pivotal for normal and malignant development. A key effector of the canonical Wnt pathway is beta-catenin, or Drosophila Armadillo. In the absence of Wnt ligand, beta-catenin is phosphorylated by the Axin complex, which earmarks it for rapid degradation by the ubiquitin system. Axin acts as a scaffold in this complex, to assemble beta-catenin substrate and kinases (casein kinase I [CKI] and glycogen synthase kinase 3 beta [GSK3]). The Adenomatous polyposis coli (APC) tumor suppressor also binds to the Axin complex, thereby promoting the degradation of beta-catenin. In Wnt signaling, this complex is inhibited; as a consequence, beta-catenin accumulates and binds to TCF proteins to stimulate the transcription of Wnt target genes. Wnt-induced inhibition of the Axin complex depends on Dishevelled (Dsh), a cytoplasmic protein that can bind to Axin, but the mechanism of this inhibition is not understood. Here, we show that Wingless signaling causes a striking relocation of Drosophila Axin from the cytoplasm to the plasma membrane. This relocation depends on Dsh. It may permit the subsequent inactivation of the Axin complex by Wingless signaling.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Curr. Biol.
    Title
    Current Biology
    Publication Year
    1991-
    ISBN/ISSN
    0960-9822
    Data From Reference
    Alleles (11)
    Genes (8)
    Experimental Tools (2)
    Transgenic Constructs (7)