FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Lnenicka, G.A., Spencer, G.M., Keshishian, H. (2003). Effect of reduced impulse activity on the development of identified motor terminals in Drosophila larvae.  J. Neurobiol. 54(2): 337--345.
FlyBase ID
FBrf0155885
Publication Type
Research paper
Abstract
In Drosophila larvae, motoneurons show distinctive differences in the size of their synaptic boutons; that is, axon 1 has type Ib ("big" boutons) terminals and axon 2 has type Is ("small" boutons) terminals on muscle fibers 6 and 7. To determine whether axon 1 develops large boutons due to its high impulse activity, we reduced impulse activity and examined the motor terminals formed by axon 1. The number of functional Na(+) channels was reduced either with the nap(ts) mutation or by adding tetrodotoxin (TTX) to the media (0.1 microg/g). In both cases, the rate of locomotion was decreased by approximately 40%, presumably reflecting a decrease in impulse activity. Locomotor activity was restored to above wild-type (Canton-S) levels when nap(ts) was combined with a duplication of para, the Na(+)-channel gene. Lucifer yellow was injected into the axon 1 motor terminals, and we measured motor terminal area, length, the number of branches, and the number and width of synaptic boutons. Although all parameters were smaller in nap(ts) and TTX-treated larvae compared to wild-type, most of these differences were not significant when the differences in muscle fiber size were factored out. Only bouton width was significantly smaller in both different nap(ts) and TTX-treated larvae: boutons were about 20% smaller in nap(ts) and TTX-treated larvae, and 20% larger in nap(ts); Dp para(+) compared to wild-type. In addition, terminal area was significantly smaller in nap(ts) compared to wild-type. Bouton size at Ib terminals with reduced impulse activity was similar to that normally seen at Is terminals. Thus, differences in impulse activity play a major role in the differentiation of bouton size at Drosophila motor terminals.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Neurobiol.
    Title
    Journal of Neurobiology
    Publication Year
    1969-
    ISBN/ISSN
    0022-3034
    Data From Reference
    Aberrations (1)
    Alleles (1)
    Genes (1)