FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Kennett, S.B., Moorefield, K.S., Horowitz, J.M. (2002). Sp3 represses gene expression via the titration of promoter-specific transcription factors.  J. Biol. Chem. 277(12): 9780--9789.
FlyBase ID
FBrf0149591
Publication Type
Research paper
Abstract
We have determined previously that Sp3 encodes three distinct gene products as follows: a full-length protein (Sp3) that is an activator of transcription and two isoforms (M1 and M2) derived via internal translational initiation that function as transcriptional repressors. To identify amino acids and functions required for transcriptional repression, we employed PCR-directed mutagenesis to create a panel of mutated M2 proteins. Biochemical and functional analyses of these mutated proteins indicate that functions encoded by the M2 carboxyl terminus, such as DNA binding activity and the capacity to form multimeric complexes, are not required or sufficient for transcriptional repression. Instead, a 93-amino acid portion of the trans-activation domain was shown to be the minimal portion of M2 required to block Sp-dependent gene expression. Transcriptional analysis of three Sp-dependent promoters showed that mutations sustained by many M2 proteins result in promoter-specific effects. Regions of M2 required for physical interactions with five TATA box-associated factors (TAF(II)s) were mapped, and mutations that disrupt the interaction of M2 with two of these proteins, TAF(II)70 and TAF(II)40, were identified. We conclude that Sp3- mediated transcriptional repression is due, at least in part, to competition for promoter-specific transcription factors.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Biol. Chem.
    Title
    Journal of Biological Chemistry
    Publication Year
    1905-
    ISBN/ISSN
    0021-9258
    Data From Reference
    Genes (6)