FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Shayan, A.J., Atwood, H.L. (2000). Synaptic ultrastructure in nerve terminals of Drosophila larvae overexpressing the learning gene dunce.  J. Neurobiol. 43(1): 89--97.
FlyBase ID
FBrf0127319
Publication Type
Research paper
Abstract
We investigated synaptic ultrastructure of individual nerve ending varicosities at the Drosophila larval neuromuscular junction in transgenic larvae overexpressing the learning gene dunce (dnc) in the nervous system. It was previously shown that cAMP is reduced to one-third normal in these larvae and that they have fewer nerve terminal varicosities and smaller junction potentials, although transmitter release from individual nerve ending varicosities is not significantly altered. We tested the hypothesis that synaptic ultrastructure is modified to compensate for possible reduced efficacy of synaptic transmission resulting from lower than normal cAMP. Synaptic size and number of presynaptic dense bodies (active zone structures) per synapse are modestly enhanced in transgenic larvae overexpressing the dnc gene product and in rutabaga (rut(1)) mutant larvae, which have reduced adenylyl cyclase activity and reduced neural cAMP. The incidence of complex synapses (possessing 2 or more presynaptic dense bodies) was not consistently different in experimental larvae compared to controls. The observations suggest that chronic reduction of cAMP levels in the nervous system of Drosophila larvae, although leading to a modest compensatory change in synaptic structure, does not markedly alter several synaptic ultrastructural parameters which are thought to influence the strength of transmitter release; thus, homeostatic mechanisms do not act to maintain normal-sized junction potentials by altering synaptic structure.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Neurobiol.
    Title
    Journal of Neurobiology
    Publication Year
    1969-
    ISBN/ISSN
    0022-3034
    Data From Reference
    Alleles (3)
    Genes (3)
    Insertions (1)
    Transgenic Constructs (1)