FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Henderson, K.D., Andrew, D.J. (2000). Regulation and function of Scr, exd, and hth in the Drosophila salivary gland.  Dev. Biol. 217(2): 362--374.
FlyBase ID
FBrf0123044
Publication Type
Research paper
Abstract
Salivary gland formation in the Drosophila embryo is dependent on the homeotic gene Sex combs reduced (Scr). When Scr function is missing, salivary glands do not form, and when SCR is expressed everywhere in the embryo, salivary glands form in new places. Scr is normally expressed in all the cells that form the salivary gland. However, as the salivary gland invaginates, Scr mRNA and protein disappear. Homeotic genes, such as Scr, specify tissue identity by regulating the expression of downstream target genes. For many homeotic proteins, target gene specificity is achieved by cooperatively binding DNA with cofactors. Therefore, it is likely that SCR also requires a cofactor(s) to specifically bind to DNA and regulate salivary gland target gene expression. Here, we show that two homeodomain-containing proteins encoded by the extradenticle (exd) and homothorax (hth) genes are also required for salivary gland formation. exd and hth function at two levels: (1) exd and hth are required to maintain the expression of Scr in the salivary gland primordia prior to invagination and (2) exd and hth are required in parallel with Scr to regulate the expression of downstream salivary gland genes. We also show that Scr regulates the nuclear localization of EXD in the salivary gland primordia through repression of homothorax (hth) expression, linking the regulation of Scr activity to the disappearance of Scr expression in invaginating salivary glands.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Dev. Biol.
    Title
    Developmental Biology
    Publication Year
    1959-
    ISBN/ISSN
    0012-1606
    Data From Reference
    Alleles (12)
    Genes (7)
    Sequence Features (1)
    Insertions (1)
    Experimental Tools (1)
    Transgenic Constructs (3)