FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Sprenger, F., Trosclair, M.M., Morrison, D.K. (1993). Biochemical analysis of torso and D-raf during Drosophila embryogenesis: implications for terminal signal transduction.  Mol. Cell. Biol. 13(2): 1163--1172.
FlyBase ID
FBrf0059032
Publication Type
Research paper
Abstract
Determination of anterior and posterior terminal structures of Drosophila embryos requires activation of two genes encoding putative protein kinases, torso and D-raf. In this study, we demonstrate that Torso has intrinsic tyrosine kinase activity and show that it is transiently tyrosine phosphorylated (activated) at syncytial blastoderm stages. Torso proteins causing a gain-of-function phenotype are constitutively tyrosine phosphorylated, while Torso proteins causing a loss-of-function phenotype lack tyrosine kinase activity. The D-raf gene product, which is required for Torso function, is identified as a 90-kDa protein with intrinsic serine/threonine kinase activity. D-Raf is expressed throughout embryogenesis; however, the phosphorylation state of the protein changes during development. In wild-type embryos, D-Raf is hyperphosphorylated at 1 to 2 h after egg laying, and thereafter only the most highly phosphorylated form is detected. Embryos lacking Torso activity, however, show significant reductions in D-Raf protein expression rather than major alterations in the protein's phosphorylation state. This report provides the first biochemical analysis of the terminal signal transduction pathway in Drosophila embryos.
PubMed ID
PubMed Central ID
PMC359001 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Mol. Cell. Biol.
    Title
    Molecular and Cellular Biology
    Publication Year
    1981-
    ISBN/ISSN
    0270-7306
    Data From Reference
    Alleles (9)
    Gene Groups (1)
    Genes (4)