FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Yang, X., Yeo, S., Dick, T., Chia, W. (1993). The role of a Drosophila POU homeodomain gene in the specification of neural precursor cell identity in the developing embryonic central nervous system.  Genes Dev. 7(3): 504--516.
FlyBase ID
FBrf0058533
Publication Type
Research paper
Abstract
The Drosophila embryonic central nervous system (CNS) is derived from a stereotypic array of progenitor stem cells called neuroblasts (NBs). Each of the approximately 25 NBs per hemisegment undergoes repeated asymmetric divisions to produce, on average, 5-10 smaller ganglion mother cells (GMCs); each GMC, in turn, divides to produce two neurons. We demonstrate that the protein product encoded by a POU homeo domain gene (dPOU28/pdm-2) is expressed in the cell nuclei of a subset of NBs and GMCs. In the wild-type animal, GMC-1 is the only identified cell in the NB4-2 lineage that expresses dPOU28 protein to a high level, and it divides to produce the RP2 neuron and a second cell of unknown fate. Our results suggest that the presence of ectopically induced dPOU28/pdm-2 protein in the progeny of GMC-1 is sufficient to cause both of these cells to adopt their parental GMC-1 cell fate, leading to duplication of the RP2 neuron (and its sister cell) on the basis of both immunological and morphological criteria. These observations clearly implicate a role for dPOU28/pdm-2 in the specification of GMC-1 cell identity in the NB4-2 lineage and possibly in the specification of cell fate in other NB lineages in the developing embryonic CNS.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Genes Dev.
    Title
    Genes & Development
    Publication Year
    1987-
    ISBN/ISSN
    0890-9369
    Data From Reference
    Alleles (1)
    Genes (2)
    Transgenic Constructs (1)