FB2024_04 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Millington, J.W., Brownrigg, G.P., Basner-Collins, P.J., Sun, Z., Rideout, E.J. (2021). Genetic manipulation of insulin/insulin-like growth factor signaling pathway activity has sex-biased effects on Drosophila body size.  G3 (Bethesda) 11(3): jkaa067.
FlyBase ID
FBrf0248704
Publication Type
Research paper
Abstract
In Drosophila raised in nutrient-rich conditions female body size is approximately 30% larger than male body size due to an increased rate of growth and differential weight loss during the larval period. While the mechanisms that control this sex difference in body size remain incompletely understood, recent studies suggest that the insulin/insulin-like growth factor signaling pathway (IIS) plays a role in the sex-specific regulation of processes that influence body size during development. In larvae, IIS activity differs between the sexes, and there is evidence of sex-specific regulation of IIS ligands. Yet, we lack knowledge of how changes to IIS activity impact body size in each sex, as the majority of studies on IIS and body size use single- or mixed-sex groups of larvae and/or adult flies. The goal of our current study was to clarify the body size requirement for IIS activity in each sex. To achieve this goal we used established genetic approaches to enhance, or inhibit, IIS activity, and quantified pupal size in males and females. Overall, genotypes that inhibited IIS activity caused a female-biased decrease in body size, whereas genotypes that augmented IIS activity caused a male-specific increase in body size. This data extends our current understanding of body size regulation by showing that most changes to IIS pathway activity have sex-biased effects, and highlights the importance of analyzing body size data according to sex.
PubMed ID
PubMed Central ID
PMC8063079 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    G3 (Bethesda)
    Title
    G3 : genes - genomes - genetics
    ISBN/ISSN
    2160-1836
    Data From Reference
    Genes (15)