FB2024_04 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Zhu, F., Li, D., Chen, K. (2019). Structures and functions of invertebrate glycosylation.  Open Biol. 9(1): 180232.
FlyBase ID
FBrf0242092
Publication Type
Review
Abstract
Glycosylation refers to the covalent attachment of sugar residues to a protein or lipid, and the biological importance of this modification has been widely recognized. While glycosylation in mammals is being extensively investigated, lower level animals such as invertebrates have not been adequately interrogated for their glycosylation. The rich diversity of invertebrate species, the increased database of sequenced invertebrate genomes and the time and cost efficiency of raising and experimenting on these species have enabled a handful of the species to become excellent model organisms, which have been successfully used as tools for probing various biologically interesting problems. Investigation on invertebrate glycosylation, especially on model organisms, not only expands the structural and functional knowledgebase, but also can facilitate deeper understanding on the biological functions of glycosylation in higher organisms. Here, we reviewed the research advances in invertebrate glycosylation, including N- and O-glycosylation, glycosphingolipids and glycosaminoglycans. The aspects of glycan biosynthesis, structures and functions are discussed, with a focus on the model organisms Drosophila and Caenorhabditis. Analytical strategies for the glycans and glycoconjugates are also summarized.
PubMed ID
PubMed Central ID
PMC6367135 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Open Biol.
    Title
    Open biology
    ISBN/ISSN
    2046-2441
    Data From Reference
    Genes (9)