FB2024_04 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Morciano, P., Iorio, R., Iovino, D., Cipressa, F., Esposito, G., Porrazzo, A., Satta, L., Alesse, E., Tabocchini, M.A., Cenci, G. (2018). Effects of reduced natural background radiation on Drosophila melanogaster growth and development as revealed by the FLYINGLOW program.  J. Cell. Physiol. 233(1): 23--29.
FlyBase ID
FBrf0236791
Publication Type
Research paper
Abstract
Natural background radiation of Earth and cosmic rays played a relevant role during the evolution of living organisms. However, how chronic low doses of radiation can affect biological processes is still unclear. Previous data have indicated that cells grown at the Gran Sasso Underground Laboratory (LNGS, L'Aquila) of National Institute of Nuclear Physics (INFN) of Italy, where the dose rate of cosmic rays and neutrons is significantly reduced with respect to the external environment, elicited an impaired response against endogenous damage as compared to cells grown outside LNGS. This suggests that environmental radiation contributes to the development of defense mechanisms at cellular level. To further understand how environmental radiation affects metabolism of living organisms, we have recently launched the FLYINGLOW program that aims at exploiting Drosophila melanogaster as a model for evaluating the effects of low doses/dose rates of radiation at the organismal level. Here, we will present a comparative data set on lifespan, motility and fertility from different Drosophila strains grown in parallel at LNGS and in a reference laboratory at the University of L'Aquila. Our data suggest the reduced radiation environment can influence Drosophila development and, depending on the genetic background, may affect viability for several generations even when flies are moved back to normal background radiation. As flies are considered a valuable model for human biology, our results might shed some light on understanding the effect of low dose radiation also in humans.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Cell. Physiol.
    Title
    Journal of Cellular Physiology
    Publication Year
    1966-
    ISBN/ISSN
    0021-9541
    Data From Reference
    Genes (3)