FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Barlow, A.L., van Drunen, C.M., Johnson, C.A., Tweedie, S., Bird, A., Turner, B.M. (2001). dSIR2 and dHDAC6: two novel, inhibitor-resistant deacetylases in Drosophila melanogaster.  Exp. Cell Res. 265(1): 90--103.
FlyBase ID
FBrf0135765
Publication Type
Research paper
Abstract
We have identified new members of the histone deacetylase enzyme family in Drosophila melanogaster. dHDAC6 is a class II deacetylase with two active sites, and dSIR2 is an NAD-dependent histone deacetylase. These proteins, together with two class I histone deacetylases, dHDAC1 and dHDAC3, have been expressed and characterized as epitope-tagged recombinant proteins in Schneider SL2 cells. All these proteins have in vitro deacetylase activity and are able to deacetylate core histone H4 at all four acetylatable lysine residues (5, 8, 12, and 16). Recombinant dHDAC6 and dSIR2 are both insensitive to TSA and HC toxin and resistant, relative to dHDAC1 and dHDAC3, to inhibition by sodium butyrate. Indirect immunofluorescence microscopy of stably transfected SL2 lines reveals that dHDAC1 and dSIR2 are nuclear, dHDAC6 is cytosolic, and dHDAC3 is detectable in both cytosol and nucleus. dHDAC6 and dSIR2 elute from Superose 6 columns with apparent molecular weights of 90 and 200 kDa, respectively. In contrast, dHDAC1 and dHDAC3elute at 800 and 700 kDa, respectively, suggesting that they are components of multiprotein complexes. Consistent with this, recombinant dHDAC1 coimmunoprecipitates with components of the Drosophila NuRD complex and dHDAC3 with an as yet unknown 45-kDa protein.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Exp. Cell Res.
    Title
    Experimental Cell Research
    Publication Year
    1950-
    ISBN/ISSN
    0014-4827
    Data From Reference