FB2024_04 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Stark, A., Kheradpour, P., Parts, L., Brennecke, J., Hodges, E., Hannon, G.J., Kellis, M. (2007). Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes.  Genome Res. 17(12): 1865--1879.
FlyBase ID
FBrf0202919
Publication Type
Research paper
Abstract
MicroRNAs (miRNAs) are short regulatory RNAs that inhibit target genes by complementary binding in 3' untranslated regions (3' UTRs). They are one of the most abundant classes of regulators, targeting a large fraction of all genes, making their comprehensive study a requirement for understanding regulation and development. Here we use 12 Drosophila genomes to define structural and evolutionary signatures of miRNA hairpins, which we use for their de novo discovery. We predict >41 novel miRNA genes, which encompass many unique families, and 28 of which are validated experimentally. We also define signals for the precise start position of mature miRNAs, which suggest corrections of previously known miRNAs, often leading to drastic changes in their predicted target spectrum. We show that miRNA discovery power scales with the number and divergence of species compared, suggesting that such approaches can be successful in human as dozens of mammalian genomes become available. Interestingly, for some miRNAs sense and anti-sense hairpins score highly and mature miRNAs from both strands can indeed be found in vivo. Similarly, miRNAs with weak 5' end predictions show increased in vivo processing of multiple alternate 5' ends and have fewer predicted targets. Lastly, we show that several miRNA star sequences score highly and are likely functional. For mir-10 in particular, both arms show abundant processing, and both show highly conserved target sites in Hox genes, suggesting a possible cooperation of the two arms, and their role as a master Hox regulator.
PubMed ID
PubMed Central ID
PMC2099594 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Genome Res.
    Title
    Genome Research
    Publication Year
    1995-
    ISBN/ISSN
    1088-9051
    Data From Reference