FB2024_03 , released April 23, 2024
Reference Report
Open Close
Reference
Citation
Heino, T.I., Karpanen, T., Wahlstrom, G., Pulkkinen, M., Eriksson, U., Alitalo, K., Roos, C. (2001). The Drosophila VEGF receptor homolog is expressed in hemocytes.  Mech. Dev. 109(1): 69--77.
FlyBase ID
FBrf0139749
Publication Type
Research paper
Abstract
Several signalling pathways have been defined by studies of genes originally characterised in Drosophila. However, some mammalian signalling systems have so far escaped discovery in the fly. Here, we describe the identification and characterisation of fly homologs for the mammalian vascular endothelial growth factor/platelet derived growth factor (VEGF/PDGF) and the VEGF receptor. The Drosophila factor (DmVEGF-1) gene has two splice variants and is expressed during all stages, the signal distribution during embryogenesis being ubiquitous. The receptor (DmVEGFR) gene has several splice variants; the variations affecting only the extracellular domain. The most prominent form is expressed in cells of the embryonic haematopoietic cell lineage, starting in the mesodermal area of the head around stage 10 of embryogenesis. Expression persists in hemocytes as embryonic development proceeds and the cells migrate posteriorly. In a fly strain carrying a deletion uncovering the DmVEGFR gene, hemocytes are still present, but their migration is hampered and the hemocytes remain mainly in the anterior end close to their origin. These data suggest that the VEGF/PDGF signalling system may regulate the migration of the Drosophila embryonic haemocyte precursor cells.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Mech. Dev.
    Title
    Mechanisms of Development
    Publication Year
    1990-
    ISBN/ISSN
    0925-4773
    Data From Reference
    Aberrations (1)
    Gene Groups (1)
    Genes (5)